A Review on the Hepatoprotective Potential of Aloe Vera and Vitamin C against Diet-Induced Liver Damage: Role of Artificial Intelligence in Preclinical Research

Authors

  • M. Ezhilarasi
  • S. Swarnalatha

Keywords:

Artificial Intelligence, Hepatoprotective, Liver diseases, Reactive oxygen species

Abstract

Liver diseases, especially those brought on by unhealthy eating patterns, such as High-Fat, High-Fructose Diets (HFHFD), have grown to be a significant global health issue because of their close ties to obesity, Non-alcoholic fatty liver disease, and metabolic syndrome are related health conditions. The limitations imposed by conventional pharmacological treatments, including adverse effects and suboptimal efficacy, have increased interest in natural hepatoprotective agents. Aloe vera and Vitamin C are two promising compounds with potent antioxidant, anti-inflammatory, and hepatocyte-regenerative properties. Aloe vera, rich in polysaccharides and bioactive compounds, supports liver cell repair, reduces lipid peroxidation, and modulates inflammatory pathways. Vitamin C (ascorbic acid), abundantly found in Amla, neutralizes Reactive Oxygen Species (ROS), restores enzymatic antioxidants, and enhances collagen synthesis. This review highlights the synergistic hepatoprotective potential of Aloe vera and Vitamin C in mitigating diet-induced liver injury. In addition, recent advances in artificial intelligence (AI) provide novel tools to enhance the evaluation of such therapeutic agents. AI techniques, including machine learning, image analysis, and natural language processing, are revolutionizing preclinical research by optimizing experimental design, automating histopathology interpretation, and predicting treatment outcomes. This review emphasizes the integration of AI in hepatoprotective studies and advocates for further translational research on these natural agents for effective liver disease management.

References

Ayoub ZE, Mehta AR. Medicinal plants as potential source of antioxidant agents: a review. Asian. J. Pharm. Clin. Res. 2018; 11(6):50-6. https://doi.org/10.22159/ajpcr.2018.v11i6.24725

Farrell GC, Rooyen D, Gan L, Chitturi S. NASH is an inflammatory disorder. Gut Liver. 2012; 6(2):149–171. https://doi.org/10.5009/gnl.2012.6.2.149

Mohammadi Z, Azarnia M, Mirabolghasemi G, Shiravi A, Mohammadi Z. Histological changes in the liver of fetuses of pregnant rats following citalopram administration. Indian. J. Pharmacol. 2013; 45(5):517-21. https://doi.org/10.4103/0253-7613.117726

Pessayre D, Fromenty B. NASH: a mitochondrial disease. J. Hepatol. 2005; 42(6):928–940. https://doi.org/10.1016/j.jhep.2005.03.004

Dash DK, Yeligar VC, Nayak SS, Ghosh T, Rajalingam R, Sengupta P, Maiti BC, Maity TK. Evaluation of the hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R. Br. on paracetamol-induced hepatotoxicity in rats. Trop. J. Pharm. Res. 2007; 6(3):755-65. https://doi.org/10.4314/tjpr.v6i3.14656

McDonald JA, Painter DM, Gallagher ND, McCaughan GW. Nodular regenerative hyperplasia mimicking cirrhosis of the liver. Gut. 1990; 31(6):725-7. https://gut.bmj.com/content/31/6/725.short

Sies H. Oxidative stress: a concept in redox biology and medicine. Redox. Biol. 2015; 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

Samuel VT, Shulman GI. The pathogenesis of insulin resistance. J. Clin. Invest. 2016; 126(1):12–22. https://doi.org/10.1172/jci77812

Mahfouz MM, Kummerow FA. Vitamin C or vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int. J. Biochem. Cell. Biol. 2004; 36(10):1919-32. https://doi.org/10.1016/j.biocel.2004.01.028

Abdel-Rahman RF, Alqasoumi SI. Role of natural products in hepatoprotection: review of studies. Saudi. Pharm. J. 2021; 29(7):547–560. https://doi.org/10.1016/j.jsps.2021.04.001

Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian. J. Dermatol. 2008; 53(4):163–166. https://doi.org/10.4103/0019-5154.44785

Mandl J, Szarka A, Bánhegyi G. Vitamin C: update on physiology and pharmacology. Br. J. Pharmacol. 2009; 157(7):1097–1110. https://doi.org/10.1111/j.1476-5381.2009.00282.x

Carr AC, Maggini S. Vitamin C, and immune function. Nutrients. 2017;9(11):1211. https://doi.org/10.3390/nu9111211

Naidu KA. Vitamin C in human health and disease is still a mystery. Nutr. J. 2003; 2:7. https://doi.org/10.1186/1475-2891-2-7

Sharma V, Sarkar IN. Bioinformatics opportunities for herbal medicine research. J. Biomed. Inform. 2013; 46(5):774–786. https://doi.org/10.1016/j.jbi.2013.06.002

Hebbard L, George J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2011;8(1):35–44. https://doi.org/10.1038/nrgastro.2010.191

Thilakchand KR, Mathai RT, Simon P, Ravi RT, Baliga-Rao MP, Baliga MS. Hepatoprotective properties of the Indian gooseberry (Emblica officinalis Gaertn): a review. Food & function. 2013;4(10):1431-41. https://pubs.rsc.org/en/content/articlelanding/2013/fo/c3fo60237k/unauth

Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface. 2018; 15(141):20170387. https://doi.org/10.1098/rsif.2017.0387

Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat. Med. 2019; 25(1):24–29. https://www.nature.com/articles/s41591-018-0316-z

Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med. Image. Anal. 2017; 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

Mayr A, Klambauer G, Unterthiner T, Hochreiter S. Deep Tox: Toxicity prediction using deep learning. Front Environ Sci. 2016; 3:80. https://doi.org/10.3389/fenvs.2015.00080

Sharma V, Sarkar IN. Bioinformatics opportunities for herbal medicine research. J. Biomed. Inform. 2013; 46(5):774–786. https://doi.org/10.1016/j.jbi.2013.06.002

Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug. Discov. Today. 2019; 24(3):773–780. https://doi.org/10.1016/j.drudis.2018.11.014

Day CP, James OFW. Steatohepatitis: a tale of two 'hits'? Gastroenterology. 1998; 114(4):842–845. https://doi.org/10.1016/s0016-5085(98)70599-2

Limdi JK, Hyde GM. Evaluation of abnormal liver function tests. Postgrad. Med. J. 2003; 79(932):307–312. https://doi.org/10.1136/pmj.79.932.307

Chandan BK, Saxena AK, Shukla S, et al. Hepatoprotective potential of Aloe barbadensis Mill. J Ethnopharmacol. 2007; 111(3):560–566. https://doi.org/10.1016/j.jep.2007.01.006

Duval C, Thissen U, Keshtkar S, et al. Adipose tissue dysfunction in NAFLD. Diabetes. 2010; 59(12):3181–3191. https://doi.org/10.2337/db10-0224

Liu R, Yu X, Wallqvist A. Prediction of hepatotoxicity using gene expression profiles. J. Chem. Inf. Model. 2015; 55(5):933–944. https://doi.org/10.1021/acs.jcim.4c01781

Rajasekaran S, Sivagnanam K, Subramanian S. Antioxidant effect of Aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacol. Rep. 2005; 57(1):90-6. https://pubmed.ncbi.nlm.nih.gov/15849382/

Kanuri G, Bergheim I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci. 2013; 14(6):11963–11980. https://doi.org/10.3390/ijms140611963

Published

2025-05-29

Issue

Section

Articles