Bovine Tuberculosis in Cattle: Pathogenesis, Detection Methods, Future Control Measures

Authors

  • Elavarasi. E
  • R. Srinivasan
  • Vanitha Sri. T
  • Harinisri. S
  • Farhatyassir. M
  • Kavinragul. A

Keywords:

Animal movement controls, BCG vaccine, Diagnostic tests (culture, PCR), Granulomas, Interferon-Gamma Release Assay (IGRA), Mycobacterium bovis, Public health risk, Pulmonary lesions, Slaughter surveillance, Tuberculin Skin Test (TST), Wildlife management, Wildlife reservoirs, Zoonotic disease

Abstract

Mycobacterium bovis is the causative agent of Bovine Tuberculosis (bTB), a chronic infectious illness that affects cattle as well as other species, including people and wildlife. Globally, it presents serious problems for the economy and public health, especially in areas where raising cattle is a substantial sector. Close contact, contaminated feed, and respiratory droplets are the main ways that the disease is spread, and wildlife reservoirs help to sustain outbreaks over time. Although silent cases make diagnosis more difficult, bTB clinically presents as increasing weight loss, respiratory difficulty, and lymph node enlargement. Skin tests, interferon-gamma assays, and bacterial culture are used for diagnosis; contemporary molecular approaches improve sensitivity and specificity. Along with immunization research, such as the BCG vaccine, which shows promise but needs further testing, control tactics include mobility limitations, wildlife management, and test-and-slaughter laws. Wildlife reservoirs, diagnostic limits, and environmental persistence make eradication bTB difficult despite tremendous efforts. Research is still being conducted to enhance sustainable disease control techniques, vaccine effectiveness, and diagnostics, highlighting the significance of a One Health strategy. To lessen the effects of bTB, safeguard the public's health, and sustain farming communities' livelihoods, coordinated international action is crucial.

References

Elsayed MSAE, Amer A. The rapid detection and differentiation of Mycobacterium tuberculosis complex members from cattle and water buffaloes in the delta area of Egypt, using a combination of real-time and conventional PCR. Mol. Biol. Rep. 2019; 46:390919. https://doi.org/10.1007/s11033-019-04834-3

Koch R. Die Aetiologie der Tuberkulose. Klin Wochenschr. 1932; 11:490–2. https://doi.org/10.1007/BF01765224

Smith T. A comparative study of bovine tubercle bacilli and of human bacilli from sputum. J. Exp. Med. 1898; 3(4-5):451. https://doi.org/10.1084/jem.3.4-5.451

Brahma D, Narang D, Chandra M, Filia G, Singh A, Singh ST. Diagnosis of bovine tuberculosis by comparative intradermal tuberculin test, interferon gamma assay and esxB (CFP-10) PCR in blood and lymph node aspirates. Open J. Vet. Med. 2019; 9(5):55-65. https://doi.org/10.4236/ojvm.2019.95005

Murai K, Tizzani P, Awada L, Mur L, Mapitse NJ, Caceres P. Bovine tuberculosis: global distribution and implementation of prevention and control measures according to WAHIS data. Panorama, (1). 2019. http://dx.doi.org/10.20506/bull.2019.1.2912

Fielding HR McKinley TJ, Delahay RJ, Silk MJ, McDonald RA. Characterization of potential superspreader farms for bovine tuberculosis: A review. Vet. Med. Sci. 2021; 7(2):310-21. https://doi.org/10.1002/vms3.358

Romha G, Gebru G, Asefa A, Mamo G. Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: Transmission dynamics and control challenges of zoonotic TB in Ethiopia. Preventive Veterinary Medicine. 2018; 158:1-7. https://doi.org/10.1016/j.prevetmed.2018.06.012

Cvetkovikj I, Mrenoshki S, Krstevski K, Djadjovski I, Angjelovski B, Popova Z, et al. Bovine Tuberculosis in the Republic of Macedonia: Postmortem, Microbiological and Molecular Study in Slaughtered Reactor Cattle. Macedonian Veterinary Review. 2017; 40(1):43–52. Available: https://sciendo.com/article/10.1515/macvetrev-2016-0097

Didkowska A, Orłowska B, Krajewska-Wędzina M, Augustynowicz-Kopeć E, Brzezińska S, Żygowska M et al. Microbiological and molecular monitoring for bovine tuberculosis in the Polish population of European bison (Bison bonasus). Ann Agric Environ Med. 2021; 28(4):575-8. https://doi.org/10.26444/aaem/130822

Ameni G, Vordermeier M, Firdessa R, Aseffa A, Hewinson G, Gordon SV, Berg S. Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia. Vet. J. 2011; 188(3):359-61. https://doi.org/10.1016/j.tvjl.2010.05.005

Mittal M, Chakravarti S, Sharma V, Sanjeeth BS, Churamani CP, Kanwar NS. Evidence of the presence of Mycobacterium tuberculosis in bovine tissue samples by multiplex PCR: possible relevance to reverse zoonosis. Transboundary and emerging diseases. 2014; 61(2):97-104. https://doi.org/10.1111/tbed.12203

Helmy NM, Abdel-Moghney AR, Atia MA. Evaluation of Different PCR-Based Techniques in Diagnosis of Bovine Tuberculosis in Infected Cattle Lymph Nodes. Am. J. Microbiol. Biotechnol. 2015;2(5):75-81. Available: https://api.semanticscholar.org/CorpusID:27163586

Abdel-Moein KA, Hamed O, Fouad H. Molecular detection of Mycobacterium tuberculosis in cattle and buffaloes: a cause for public health concern. Tropical animal health and production. 2016; 48:1541-5. https://doi.org/10.1007/s11250-016-1125-3

Hlokwe TM, Said H, Gcebe N. Mycobacterium tuberculosis infection in cattle from the Eastern Cape Province of South Africa. BMC veterinary research. 2017; 13:1-9. https://doi.org/10.1186/s12917-017-1220-3

Ibrahim S, Danbirni S, Abubakar UB, Usman A, Saidu AS, Abdulkadir A. Estimates of Mycobacterial Infections Based on Abattoir Surveillance in Two North-Eastern States of Nigeria. Acta Sci. Microbiol. 2018; 1:60-5. Available: https://actascientific.com/ASMI/pdf/ASMI-01-0054.pdf

Orłowska B, Krajewska-Wędzina M, Augustynowicz-Kopeć E, Kozińska M, Brzezińska S, Zabost A, Didkowska A, Welz M, Kaczor S, Żmuda P, Anusz K. Epidemiological characterization of Mycobacterium caprae strains isolated from wildlife in the Bieszczady Mountains, on the border of Southeast Poland. BMC veterinary research. 2020; 16:1-8. https://doi.org/10.1186/s12917-020-02581-3

Miller MA, Kerr TJ, de Waal CR, Goosen WJ, Streicher EM, Hausler G, Rossouw L, Manamela T, van Schalkwyk L, Kleynhans L, Warren R. Mycobacterium bovis infection in free-ranging African elephants. Emerging Infectious Diseases. 2021; 27(3):990. https://doi.org/10.3201/eid2703.204729

Krajewska M, Załuski M, Zabost A, Orłowska B, Augustynowicz-Kopeć E, Anusz K, Lipiec M, Weiner M, Szulowski K. Tuberculosis in antelopes in a zoo in Poland–Problem of Public Health. Pol. J. Microbiol. 2015; 4:405-7. https://doi.org/10.5604/17331331.1185242

Egbe NF, Muwonge A, Ndip L, Kelly RF, Sander M, Tanya V, et al. Molecular epidemiology of Mycobacterium bovis in Cameroon. Sci Rep. 2017; 7:4652. https://doi.org/10.1038/s41598-017-04230-6

Ameni G, Aseffa A, Engers H, Young D, Hewinson G, Vordermeier M. Cattle husbandry in Ethiopia is a predominant factor affecting the pathology of bovine tuberculosis and gamma interferon responses to mycobacterial antigens. Clin. Vaccine. Immunol. 2006; 13:1030–6. https://doi.org/10.1128/CVI.00134-06

Kuria JKN. Diseases caused by Bacteria in cattle: tuberculosis. InBacterial cattle diseases 2019. IntechOpen. Available: https://www.intechopen.com/chapters/64814

Broughan JM, Judge J, Ely E, Delahay RJ, Wilson G, Clifton-Hadley RS, Goodchild AV, Bishop H, Parry JE, Downs SH. A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiology & Infection. 2016 Oct; 144(14):2899-926. https://doi.org/10.1017/s095026881600131x

Krajewska‐Wędzina M, Didkowska A, Sridhara AA, Elahi R, Johnathan‐Lee A, Radulski Ł, Lipiec M, Anusz K, Lyashchenko KP, Miller MA, Waters WR. Transboundary tuberculosis: Importation of alpacas infected with Mycobacterium bovis from the United Kingdom to Poland and potential for serodiagnostic assays in detecting tuberculin skin test false‐negative animals. Transbound. Emerg. Dis. 2020; 67(3):1306-14. https://doi.org/10.1111/tbed.13471

Le Roex N, Koets AP, Van Helden PD, Hoal EG. Gene polymorphisms in African buffalo associated with susceptibility to bovine tuberculosis infection. PLoS One. 2013;8: e64494. https://doi.org/10.1371/journal.pone.0064494

Taylor SJ, Ahonen LJ, de Leij FA, Dale JW. Infection of Acanthamoeba castellanii with Mycobacterium bovis and M. bovis BCG and survival of M. bovis within the amoebae. Appl. Environ. Microbiol. 2003; 69(7):4316-9. https://doi.org/10.1128/AEM.69.7.4316-4319.2003

Dejene SW, Heitkönig IM, Prins HH, Lemma FA, Mekonnen DA, Alemu ZE, Kelkay TZ, de Boer WF. Risk factors for Bovine Tuberculosis (bTB) in cattle in Ethiopia. PLoS One. 2016; 11(7): e0159083. https://doi.org/10.1371/journal.pone.0159083

Alfonso R, Romero RE, Diaz A, Calderon MN, Urdaneta G, Arce J, Patarroyo ME, Patarroyo MA. Isolation and identification of mycobacteria in New World primates maintained in captivity. Veterinary microbiology. 2004; 98(3-4):285-95. https://doi.org/10.1016/j.vetmic.2003.10.023

Published

2025-05-03