Harmonic Balance Approach to Solve Relativistic Oscillator
Keywords:
Approximate technique, Convergence of solution, Harmonic balance approach, Perturbation method, Relativistic oscillatorAbstract
This article uses the harmonic balance approach to find a relativistic oscillator's approximate solution. The outcomes have been contrasted with previous findings. The current solution and its numerical solution agree quite well.
References
A. H. Nayfeh, Perturbation Methods, New York, John Wiley & Sons, 2000, doi: https://doi.org/10.1002/9783527617609.
A. Lindstedt, “Ueber die Integration einer für die Störungstheorie wichtigen Differentialgleichung,” Astronomische Nachrichten, vol. 103, no. 14, pp. 211–220, Jan. 1882, doi: https://doi.org/10.1002/asna.18821031404.
H. Poincare, New methods of Celestial Mechanics, Springer Nature, vol. 13, 1992
M. S. Alam, I.A. Yeasmin, and Md. S. Ahamed, “Generalization of the modified Lindstedt-Poincare method for solving some strong nonlinear oscillators,” Ain Shams Engineering Journal, vol. 10, no. 1, pp. 195–201, Feb. 2019, doi: https://doi.org/10.1016/j.asej.2018.08.007.
M. S. Alam, N. Sharif, and M. H. U. Molla, “Combination of modified Lindstedt-Poincare and homotopy perturbation methods,” Journal of Low Frequency Noise, Vibration and Active Control, vol. 42, no. 2, pp. 642–653, Dec. 2022, doi: https://doi.org/10.1177/14613484221148049.
N. N. Bogoliubov, F., Yu. A. Mitropolskii, Asymptotic methods in the theory of nonlinear oscillations, Gordan and Breach, New York, 1961.
N. M. Krylov, N. N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, New Jersey, 1947.
R. E. Mickens, “Periodic Solutions Of The Relativistic Harmonic Oscillator,” Journal of Sound and Vibration, vol. 212, no. 5, pp. 905–908, May 1998, doi: https://doi.org/10.1006/jsvi.1997.1453.
A. Beléndez, C. Pascual, D. I. Méndez, and C. Neipp, “Solution of the relativistic (an)harmonic oscillator using the harmonic balance method,” Journal of Sound and Vibration, vol. 311, no. 3–5, pp. 1447–1456, Apr. 2008, doi: https://doi.org/10.1016/j.jsv.2007.10.010.
D. Younesian, H. Askari, Z. Saadatnia, and M. KalamiYazdi, “Analytical approximate solutions for the generalized nonlinear oscillator,” Applicable Analysis, vol. 91, no. 5, pp. 965–977, May 2012, doi: https://doi.org/10.1080/00036811.2011.559464.
A. Mirzabeigy, M. Kalami-Yazdi, and A. Yildirim, “Analytical approximations for a conservative nonlinear singular oscillator in plasma physics,” Journal of the Egyptian Mathematical Society, vol. 20, no. 3, pp. 163–166, Sep. 2012, doi: https://doi.org/10.1016/j.joems.2012.05.001.
M. Helal, M. A. Razzak, and M. S. Alam, “Harmonic balance method for solving a large-amplitude oscillation of a conservative system with inertia and static non-linearity,” Results in Physics, vol. 6, pp. 238–242, Jan. 2016, doi: https://doi.org/10.1016/j.rinp.2016.04.012.
I. A. Yeasmin, N. Sharif, M. S. Rahman, and M. S. Alam, “Analytical technique for solving the quadratic nonlinear oscillator,” Results in Physics, vol. 18, pp. 103303–103303, Aug. 2020, doi: https://doi.org/10.1016/j.rinp.2020.103303.
A. Beléndez, C. Pascual, A. Márquez, and D. I. Méndez, “Application of He’s Homotopy Perturbation Method to the Relativistic (An) harmonic Oscillator. I: Comparison between Approximate and Exact Frequencies,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 4, Jan. 2007, doi: https://doi.org/10.1515/ijnsns.2007.8.4.483.
J. Biazar and M. Hosami, “An easy trick to a periodic solution of relativistic harmonic oscillator,” Journal of the Egyptian Mathematical Society, vol. 22, no. 1, pp. 45–49, Apr. 2014, doi: https://doi.org/10.1016/j.joems.2013.04.013.